PITHAPUR RAJAH'S GOVERNMENT COLLEGE (AUTONOMOUS), KAKINADA

DEPARTMENT OF MATHEMATICS

Differential Equations

Syllabus:

UNIT-I

(12 Hours)

Differential Equations of first order and first degree: Linear Differential Equations; Differential equations reducible to linear form (Bernoulli's Differential Equations); Exact differential equations; Integrating factors. Definition:(Differential Equations of first order and first degree)

A differential equation is in the form $\frac{dy}{dx} = f(x, y)$ is called a differential equation of the first order and of the first degree.

We study the following methods for solving $\frac{dy}{dx} = f(x, y)$

- 1. Variable separable. (Intermediate)
- 2. Homogeneneous differential equations. (Intermediate)
- 3. Non-Homogeneous differential equations. (Intermediate)
- 4. Linear differential equations.
- 5. Bernoullis Differential equations.
- 6. Exact Differential Equations.
- 7. Non- Exact Differential Equations.

Linear differential equations:

A differential equation is in the form $\frac{dy}{dx} + Py = Q$ where P and Q are functions of x, is called Linear differential equation.

Working Rule to solve the equation:

- 1. First to reduce the given differential equation in the form $\frac{dy}{dx} + P y = Q$ and then identify P and Q.
- 2. To find the Integrating Factor (I.F) = $e^{\int P dx}$
- 3. And then to find the general solution $y(I.F) = \int Q(I.F)dx + c$.

Problems:

1. Solve
$$\frac{dy}{dx} + 2xy = e^{-x^2}$$

Solution: Given differential equation $\frac{dy}{dx} + 2xy = e^{-x^2}$

Let
$$P = 2x$$
 & $Q = e^{-x^2}$

The integrating factor (I.F) = $e^{\int P dx} = e^{\int 2x dx} = e^{2(\frac{x^2}{2})} = e^{x^2}$

$$IF = e^{x^2}$$

The general solution is $y(I.F) = \int Q(I.F)dx + c$.

$$y(e^{x^2}) = \int e^{-x^2} (e^{x^2}) dx + c = \int 1 dx + c = x + c$$

$$\therefore ye^{x^2} = x + c$$

2. Solve
$$x \log x \frac{dy}{dx} + y = 2 \log x$$

Solution: Given differential equation $x \log x \frac{dy}{dx} + y = 2 \log x$

It can be reduced to $\frac{dy}{dx} + \frac{1}{x \log x} y = \frac{2}{x}$

Let
$$P = \frac{1}{x \log x}$$
 & $Q = \frac{2}{x}$

The integrating factor (I.F) = $e^{\int P dx} = e^{\int \frac{1}{x \log x} dx} = e^{\log(\log x)} = \log x$

IF =
$$\log x$$

The general solution is $y(I.F) = \int Q(I.F)dx$. let $\log x = t \Rightarrow \frac{1}{x} dx = dt$

$$y \log x = \int \frac{2}{x} (\log x) dx = 2 \int t dt = 2 \left(\frac{t^2}{2} \right) + c = t^2 + c = (\log x)^2 + c$$

 \therefore The general solution $y \log x = (\log x)^2 + c$

3. Solve
$$x \frac{dy}{dx} + 2y = x^2 \log x$$

Solution: Given differential equation $x \frac{dy}{dx} + 2y = x^2 \log x$

It can be reduced to $\frac{dy}{dx} + \frac{2}{x}y = x \log x$

Let
$$P = \frac{2}{x}$$
 & $Q = x \log x$

The integrating factor (I.F) = $e^{\int P dx} = e^{\int_x^2 dx} = e^{2\log x} = e^{\log x^2} = x^2$

$$IF = \chi^2$$

The general solution is $y(I.F) = \int Q(I.F)dx + c$.

$$yx^{2} = \int x \log x \ (x^{2})dx = \int x^{3} \log x \ dx + c$$

$$= \int \log x \ (x^{3}) \ dx + c$$

$$= (\log x) \frac{x^{4}}{4} - \int \frac{1}{x} \left(\frac{x^{4}}{4}\right) dx + c$$

$$= \frac{x^{4}}{4} (\log x) - \frac{1}{4} \int x^{3} dx + c$$

$$yx^{2} = \frac{x^{4}}{4} (\log x) - \frac{1}{4} \frac{x^{4}}{4} + c$$

$$=\frac{x^4}{4}(\log x) - \frac{x^4}{16} + c$$

 $\therefore \text{ The general solution } yx^2 = \frac{x^4}{4}(\log x) - \frac{x^4}{16} + c$

⁴. Solve
$$(x^2 + 1) \frac{dy}{dx} + 4xy = \frac{1}{x^2 + 1}$$

Solution: Given differential equation $(x^2 + 1) \frac{dy}{dx} + 4xy = \frac{1}{x^2 + 1}$

It can be reduced to $\frac{dy}{dx} + \frac{4x}{(x^2+1)}$ $y = \frac{1}{(x^2+1)^2}$

Let
$$P = \frac{4x}{(x^2+1)}$$
 & $Q = \frac{1}{(x^2+1)^2}$

The integrating factor (I.F) = $e^{\int P dx} = e^{\int \frac{4x}{(x^2+1)} dx} = e^{2\int \frac{2x}{(x^2+1)} dx}$

$$= e^{2\log(x^2+1)} = e^{\log(x^2+1)^2}$$

$$IF = (x^2 + 1)^2$$

The general solution is $y(I.F) = \int Q(I.F)dx + c$.

$$y(x^2+1)^2 = \int (x^2+1)^2 \frac{1}{(x^2+1)^2} dx + c = \int 1 dt + c = x + c$$

: The general solution $y(x^2 + 1)^2 = x + c$

5. Solve
$$(x + 1) \frac{dy}{dx} - xy = 1 - x$$

Solution: Given differential equation $(x + 1) \frac{dy}{dx} - xy = 1 - x$

It can be reduced to $\frac{dy}{dx} - \frac{x}{(1+x)} y = \frac{1-x}{1+x}$

Let
$$P = -\frac{x}{(1+x)}$$
 and $Q = \frac{1-x}{1+x}$

The integrating factor (I.F) = $e^{\int P dx} = e^{-\int \frac{x}{(1+x)} dx} = e^{-\int \frac{1+x-1}{(1+x)} dx}$

$$= e^{-\int 1-\frac{1}{(1+x)}}dx$$

$$= e^{-[x-\log(1+x)]}$$

$$= e^{-[x-\log(1+x)]}$$

$$= e^{-x} e^{\log(1+x)} = (1 + x) e^{-x}$$

$$IF = (1 + x) e^{-x}$$

The general solution is $y(I.F) = \int Q(I.F)dx + c$.

$$y(1+x)e^{-x} = \int (1+x)e^{-x} \left[\frac{1-x}{1+x} \right] dx + c = \int (1-x)e^{-x} dt + c$$

$$= (1-x)(-e^{-x}) - \int (-1)(-e^{-x}) dx + c$$

$$= -(1-x)e^{-x} - \int e^{-x} dx + c$$

$$y(1+x)e^{-x} = -(1-x)e^{-x} + e^{-x} + c = xe^{-x} + c$$

 \therefore The general solution $y(1 + x)e^{-x} = xe^{-x} + c$

6. Solve
$$x \frac{dy}{dx} + y \log x = e^x x^{1 - \frac{1}{2} \log x}$$

Solution: Given differential equation $x \frac{dy}{dx} + y \log x = e^x x^{1 - \frac{1}{2} \log x}$

It can be reduced to $\frac{dy}{dx} + y$ $\frac{\log x}{x} = \frac{e^x x^{1 - \frac{1}{2} \log x}}{x} = e^x x^{-\frac{1}{2} \log x}$

Let
$$P = \frac{\log x}{x}$$
 & $Q = e^x x^{-\frac{1}{2}\log x}$

The integrating factor (I.F) = $e^{\int P dx} = e^{\int \frac{\log x}{x}} dx$

$$= e^{\frac{(\log x)^2}{2}}$$

$$= e^{\log x} \frac{\log x}{2} = \left[e^{\log x} \right]^{\frac{\log x}{2}} = x^{\frac{1}{2} \log x}$$

$$IF = x^{\frac{1}{2} \log x}$$

The general solution is $y(I.F) = \int Q(I.F)dx + c$.

$$y x^{\frac{1}{2}\log x} = \int e^x x^{-\frac{1}{2}\log x} (x^{\frac{1}{2}\log x}) dx + c$$
$$= \int e^x dx + c = e^x + c$$

The general solution $yx^{\frac{1}{2}\log x} = e^x + c$

7. Solve
$$x^2 \frac{dy}{dx} + (x-2)y = x^2 e^{-\frac{2}{x}}$$

Solution: Given differential equation $x^2 \frac{dy}{dx} + (x-2)y = x^2 e^{-\frac{2}{x}}$

It can be reduced to $\frac{dy}{dx} + \frac{1}{x^2}(x-2)y = e^{-\frac{2}{x}}$

Let
$$P = \frac{x-2}{x^2} = \frac{1}{x} - \frac{2}{x^2}$$
 & $Q = e^{-\frac{2}{x}}$

The integrating factor (I.F) = $e^{\int P dx} = e^{\int \left[\frac{1}{x} - \frac{2}{x}\right] dx} = e^{\log x + \frac{2}{x}}$

$$= e^{\log x} e^{\frac{2}{x}} = x e^{\frac{2}{x}}$$

$$IF = x e^{\frac{2}{x}}$$

The general solution is $y(I.F) = \int Q(I.F)dx + c$.

$$y x e^{\frac{2}{x}} = \int x e^{\frac{2}{x}} e^{-\frac{2}{x}} dx + c = \int x dt + c = \frac{x^2}{2} + c$$

∴ The general solution $y x e^{-\frac{2}{x}} = \frac{x^2}{2} + c$

8.. Solve
$$(1 + x^2) \frac{dy}{dx} + 2xy = 4x^2$$

Solution: Given differential equation $(1 + x^2) \frac{dy}{dx} + 2xy = 4x^2$

It can be reduced to $\frac{dy}{dx} + \frac{2x}{(1+x^2)} y = \frac{4x^2}{1+x^2}$

Let
$$P = \frac{2x}{(1+x^2)}$$
 & $Q = \frac{4x^2}{1+x^2}$

The integrating factor (I.F) = $e^{\int P dx} = e^{\int \frac{2x}{(x^2+1)} dx} = e^{\log(1+x^2)} = 1 + x^2$

$$I F = 1 + x^2$$

The general solution is $y(I.F) = \int Q(I.F)dx + c$.

$$y(1 + x^2) = \int (1 + x^2) \left[\frac{4x^2}{1 + x^2} \right] dx + c = \int 4x^2 dt + c = \frac{4x^3}{3} + c$$

∴ The general solution
$$y(1 + x^2) = \frac{4x^3}{x^2} + c$$

9. Solve
$$\cos^2 x \frac{dy}{dx} + y = \tan x$$

Solution: Given differential equation $\cos^2 x \frac{dy}{dx} + y = \tan x$

It can be reduced to $\frac{dy}{dx} + \frac{1}{\cos^2 x}$ $y = \frac{Tan x}{\cos^2 x} \Rightarrow \frac{dy}{dx} + \sec^2 x$ $y = \tan x \sec^2 x$

Let
$$P = sec^2x$$
 & $Q = tan x sec^2x$

The integrating factor (I.F) = $e^{\int P dx} = e^{\int sec^2x dx} = e^{Tan x}$

$$IF = e^{Tan x}$$

The general solution is $y(I.F) = \int Q(I.F)dx + c$.

$$ye^{Tan x} = \int \tan x \ sec^2 x \ e^{Tan x} dx + c$$

Let
$$\tan x = t \implies sec^2 x dx = dt$$

$$\therefore ye^{Tan x} = \int t e^t dt + c = e^t(t-1) + c$$

: The general solution $ye^{Tan x} = e^{Tan x}(\tan x - 1) + c$

10. Solve
$$(x + 2y^3) \frac{dy}{dx} = y$$
.

Solution: To convert the differential equation in the form $\frac{dx}{dy} + P x = Q$

Given that
$$(x + 2y^3) \frac{dy}{dx} = y \implies y \frac{dx}{dy} = x + 2y^3$$

$$\Rightarrow y \frac{dx}{dy} - x = 2y^3$$

$$\Rightarrow \frac{dx}{dy} - \frac{x}{y} = 2y^2$$

Let
$$P = \frac{-1}{y}$$
 and $Q = 2y^2$

The integrating factor (I.F) =
$$e^{\int P dy} = e^{\int \frac{-1}{y} dy} = e^{-\log y} = \frac{1}{y}$$
 \therefore IF = $\frac{1}{y}$

The general solution $x(I.F) = \int Q(I.F)dy + c$

$$x(\frac{1}{y}) = \int 2y^2(\frac{1}{y})dy + c = \int 2ydy + c = \frac{2y^2}{2} + c = y^2 + c$$

Hence the general solution
$$\frac{x}{y} = y^2 + c$$

11. Solve $(1 + y^2)dx = (\tan^{-1} y - x)dy$.

Solution: To convert the differential equation in the form $\frac{dx}{dy} + P x = Q$

Given that
$$(1 + y^2)dx = (\tan^{-1} y - x)dy$$

$$\Rightarrow (1 + y^2)\frac{dx}{dy} = (\tan^{-1} y - x)$$

$$\Rightarrow (1 + y^2)\frac{dx}{dy} + x = \tan^{-1} y \Rightarrow \frac{dx}{dy} + \frac{1}{1+y^2}x = \frac{\tan^{-1} y}{1+y^2}$$

$$Let P = \frac{1}{1+y^2} \text{ and } Q = \frac{\tan^{-1} y}{1+y^2}$$

The integrating factor (I.F) = $e^{\int P dy} = e^{\int \frac{1}{1+y^2} dy} = e^{\tan^{-1} y}$ \therefore IF = $e^{\tan^{-1} y}$

The general solution $x(I.F) = \int Q(I.F)dy + c$

$$x(e^{\tan^{-1}y}) = \int \frac{\tan^{-1}y}{1+y^2} (e^{\tan^{-1}y}) dy + c -----(1)$$
Let $\tan^{-1}y = t \Rightarrow \frac{1}{1+y^2} dy = dt$

(1) Can be written as
$$x(e^{\tan^{-1}y}) = \int te^t dt + c = e^t(t-1) + c$$

Hence general solution is $x(e^{\tan^{-1}y}) = e^{\tan^{-1}y}(\tan^{-1}y - 1) + c$

Bernoulli's Differential equations:

A differential equation is in the form $\frac{dy}{dx} + P y = Qy^n$ where P and Q are functions of x, is called Bernoulli's differential equation.

Working Rule to solve the equation:

1. First to divide the DE with y^n on both sides $\frac{1}{y^n} \frac{dy}{dx} + P y^{1-n} = Q - (*)$

2. Put
$$y^{1-n} = z$$
 and then $(1-n)y^{-n}\frac{dy}{dx} = \frac{dz}{dx} \implies \frac{1}{y^n}\frac{dy}{dx} = \frac{1}{1-n}\frac{dz}{dx}$

3. Substitute the values in (*)

$$\frac{1}{1-n}\frac{dz}{dx} + Pz = Q \text{ is a linear differential equation and then solve.}$$

Problems:

1. Solve
$$\frac{dy}{dx} + \frac{y}{x} = x^2 y^6$$

Solution: The given differential equation $\frac{dy}{dx} + \frac{y}{x} = x^2 y^6$

Divide the DE with y^6 on both sides $\frac{1}{y^6} \frac{dy}{dx} + \frac{y^{-5}}{x} = x^2$ (1)

Put
$$y^{-5} = z$$
 and then $-5y^{-5-1} \frac{dy}{dx} = \frac{dz}{dx} \Rightarrow \frac{1}{y^6} \frac{dy}{dx} = \frac{1}{-5} \frac{dz}{dx}$

(1) Can be written as
$$\frac{-1}{5} \frac{dz}{dx} + \frac{z}{x} = x^2 \Rightarrow \frac{dz}{dx} - \frac{5z}{x} = -5x^2$$

Let
$$P_1 = \frac{-5}{x}$$
 and $Q_1 = -5x^2$

The integrating factor (I.F) = $e^{\int P_1 dx}$

$$= e^{\int_{-x}^{-5} dx} = e^{-5 \int_{-x}^{1} dx}$$

$$= e^{-5 \log x} = e^{\log x^{-5}} = x^{-5} = \frac{1}{x^{5}} \qquad IF = \frac{1}{x^{5}}$$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$y^{-5} \frac{1}{x^5} = \int -5x^2 \left(\frac{1}{x^5}\right) dx + c$$

$$\frac{1}{x^5 y^5} = -5 \int x^{-3} dx + c = -5 \left[\frac{x^{-3+1}}{-3+1}\right] + c$$

The general solution $\frac{1}{x^5 y^5} = \frac{5}{2x^2} + c$

2. Solve
$$\frac{dy}{dx} + \frac{y}{x} = y^2x \sin x$$

Solution: The given differential equation $\frac{dy}{dx} + \frac{y}{x} = y^2x \sin x$

Divide the DE with y^2 on both sides $\frac{1}{y^2} \frac{dy}{dx} + \frac{y^{-1}}{x} = x \sin x$ ----- (1)

Put
$$y^{-1} = z$$
 and then $(-1) y^{-1-1} \frac{dy}{dx} = \frac{dz}{dx} \implies \frac{1}{y^2} \frac{dy}{dx} = -\frac{dz}{dx}$

(1) Can be written as
$$-\frac{dz}{dx} + \frac{z}{x} = x \sin x \Rightarrow \frac{dz}{dx} - \frac{z}{x} = -x \sin x$$

Let
$$P_1 = \frac{-1}{x}$$
 and $Q_1 = -x \sin x$

The integrating factor (I.F) = $e^{\int P_1 dx}$

$$= e^{\int \frac{-1}{x} dx}$$

$$= e^{-\log x} = e^{\log x^{-1}} = x^{-1} = \frac{1}{x}$$

$$IF = \frac{1}{x}$$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$y^{-1} \frac{1}{x} = \int -x \sin x \left(\frac{1}{x}\right) dx + c$$

$$\frac{1}{xy} = -\int \sin x \, dx + c = \cos x + c$$

Hence the GS is
$$\frac{1}{xy} = \cos x + c$$

3. Solve
$$x \frac{dy}{dx} + y = y^2 \log x$$

Solution: The given differential equation $x \frac{dy}{dx} + y = y^2 \log x$

Divide the DE with xy^2 on both sides $\frac{1}{y^2} \frac{dy}{dx} + \frac{y^{-1}}{x} = \frac{\log x}{x}$ -----(1)

Put
$$y^{-1} = z$$
 and then (-1) $y^{-1-1} \frac{dy}{dx} = \frac{dz}{dx} \implies \frac{1}{y^2} \frac{dy}{dx} = -\frac{dz}{dx}$

(1) Can be written as
$$-\frac{dz}{dx} + \frac{z}{x} = \frac{\log x}{x} \Rightarrow \frac{dz}{dx} - \frac{z}{x} = -\frac{\log x}{x}$$

Let
$$P_1 = \frac{-1}{x}$$
 and $Q_1 = -\frac{\log x}{x}$

The integrating factor (I.F) = $e^{\int P_1 dx}$

$$=e^{\int \frac{-1}{x} dx} = e^{-\log x} = e^{\log x^{-1}} = x^{-1} = \frac{1}{x}$$
 $IF = \frac{1}{x}$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$y^{-1} \frac{1}{x} = \int -\frac{\log x}{x} \left(\frac{1}{x}\right) dx + c = -\int \frac{1}{x^2} \log x \ dx + c$$

$$\frac{1}{xy} = -\left[\log x \left\{-\frac{1}{x}\right\} - \int \frac{1}{x} \left\{-\frac{1}{x}\right\} dx\right] + c$$

$$\frac{1}{xy} = \frac{1}{x} \log x - \int \frac{1}{x^2} dx + c = \frac{1}{x} \log x + \frac{1}{x} + c$$

Hence the GS is $\frac{1}{xy} = \frac{1}{x} \left[\log x + 1 \right] + c$

4. solve
$$3\frac{dy}{dx} + \frac{2y}{1+x} = \frac{x^3}{y^2}$$

Solution: Multiply the given differential equation with $\frac{y^2}{3}$

$$y^2 \frac{dy}{dx} + \frac{2y^3}{3(1+x)} = \frac{x^3}{3}$$
 (1)

Put $y^3 = z$ and then $3y^2 \frac{dy}{dx} = \frac{dz}{dx} \Rightarrow y^2 \frac{dy}{dx} = \frac{1}{3} \frac{dz}{dx}$

(1) Can be written as
$$\frac{1}{3} \frac{dz}{dx} + \frac{2z}{3(1+x)} = \frac{x^3}{3} \Rightarrow \frac{dz}{dx} + \frac{2z}{(1+x)} = x^3$$

Let
$$P_1 = \frac{2}{1+x}$$
 and $Q_1 = x^3$

The integrating factor (I.F) = $e^{\int P_1 dx}$

$$=e^{\int \frac{2}{1+x} dx} = e^{2\log(1+x)} = e^{\log(1+x)^2} = (1+x)^2$$

$$IF = (1 + x)^2$$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$y^{3} (1+x)^{2} = \int x^{3} (1+x)^{2} dx + c$$

$$= \int x^{3} (1+2x+x^{2}) dx$$

$$= \int [x^{3} + 2x^{4} + x^{5}] dx = \frac{x^{4}}{4} + \frac{2x^{5}}{5} + \frac{x^{6}}{6} + c$$

Hence the GS is $y^3 (1+x)^2 = \frac{x^4}{4} + \frac{2x^5}{5} + \frac{x^6}{6} + c$

5. Solve
$$(1 - x^2) \frac{dy}{dx} + xy = xy^2$$

Solution: The given differential equation is $(1 - x^2) \frac{dy}{dx} + xy = xy^2$

Dividing with $(1 - x^2)y^2$ on both sides

$$\frac{1}{v^2} \frac{dy}{dx} + \frac{xy}{(1-x^2)v^2} = \frac{xy^2}{(1-x^2)v^2}$$

$$\Rightarrow \frac{1}{y^2} \frac{dy}{dx} + \frac{x}{(1-x^2)y} = \frac{x}{(1-x^2)}$$

Put
$$\frac{1}{y} = z$$
 and then $-\frac{1}{y^2} \frac{dy}{dx} = \frac{dz}{dx} \implies \frac{1}{y^2} \frac{dy}{dx} = -\frac{dz}{dx}$

Can be written as
$$-\frac{dz}{dx} + \frac{xz}{(1-x^2)} = \frac{x}{(1-x^2)} \implies \frac{dz}{dx} - \frac{xz}{(1-x^2)} = \frac{-x}{(1-x^2)}$$

Let
$$P_1 = -\frac{x}{(1-x^2)}$$
 and $Q_1 = \frac{-x}{(1-x^2)}$

The integrating factor (I.F) = $e^{\int P_1 dx}$

$$= e^{\int -\frac{x}{(1-x^2)}} dx = e^{\frac{1}{2} \int \frac{-2x}{(1-x^2)}} dx$$

$$= e^{\frac{1}{2} \log(1-x^2)} = e^{\log(1-x^2)^{1/2}} = \sqrt{1-x^2} \quad IF = \sqrt{1-x^2}$$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$\frac{1}{y}\sqrt{1-x^2} = \int \frac{-x}{(1-x^2)}\sqrt{1-x^2}dx + c$$

$$= \frac{1}{2}\int \frac{-2x}{\sqrt{1-x^2}}dx + c$$

$$= \frac{1}{2}2\sqrt{1-x^2} + c$$

The general solution $\frac{1}{y}\sqrt{1-x^2} = \sqrt{1-x^2} + c$

6. solve
$$(x + 1)\frac{dy}{dx} + 1 = e^{x-y}$$

Solution: The given differential equation is $(x + 1)\frac{dy}{dx} + 1 = e^{x-y} = e^x e^{-y}$

Dividing with $(x + 1)e^{-y}$ on both sides

$$e^{y} \frac{dy}{dx} + \frac{e^{y}}{x+1} = \frac{e^{x}}{x+1}$$

Put
$$e^y = z$$
 and then $e^y \frac{dy}{dx} = \frac{dz}{dx}$

Can be written as
$$\frac{dz}{dx} + \frac{z}{x+1} = \frac{e^x}{x+1}$$

Let
$$P_1 = \frac{1}{x+1}$$
 and $Q_1 = \frac{e^x}{x+1}$

The integrating factor (I.F) = $e^{\int P_1 dx} = e^{\int_{x+1}^{x} dx} = e^{\log(x+1)} = x + 1$

$$IF = x + 1$$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$e^{y}(x+1) = \int \frac{e^{x}}{x+1}(x+1)dx + c = \int (x+1)dx$$
$$= \frac{x^{2}}{2} + x + c$$

∴ The general solution $e^{y}(x+1) = \frac{x^2}{2} + x + c$

7. Solve
$$\frac{dy}{dx} + (2x \tan^{-1} y - x^3)(1 + y^2) = 0$$

Solution: The given differential equation is $\frac{dy}{dx} + (2x \tan^{-1} y - x^3)(1 + y^2) = 0$

Dividing with $1 + y^2$ on both sides

$$\frac{1}{1+y^2} \frac{dy}{dx} + (2x \tan^{-1} y - x^3) = 0$$

$$\frac{1}{1+y^2} \frac{dy}{dx} + 2x \tan^{-1} y = x^3$$

Put
$$\tan^{-1} y = z$$
 and then $\frac{1}{1+y^2} \frac{dy}{dx} = \frac{dz}{dx}$

Can be written as $\frac{dz}{dx} + 2xz = x^3$

Let $P_1 = 2x$ and $Q_1 = x^3$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$\tan^{-1} y (e^{x^2}) = \int x^3 (e^{x^2}) dx + c$$

$$e^{x^2} \tan^{-1} y = \int x^2 (e^{x^2}) x dx + c$$

let
$$x^2 = t \Rightarrow 2xdx = dt \Rightarrow xdx = \frac{1}{2}dt$$

$$e^{x^2} \tan^{-1} y = \int t (e^t) \frac{1}{2} dt + c = \frac{1}{2} e^t (t - 1) + c$$

: The general solution $e^{x^2} \tan^{-1} y = \frac{1}{2} e^{x^2} (x^2 - 1) + c$

8. Solve
$$\frac{dy}{dx}(x^2y^3 + xy) = 1$$

Solution: Given that $\frac{dy}{dx}(x^2 y^3 + xy) = 1$

$$\frac{dx}{dy} = x^2 y^3 + xy \Rightarrow \frac{dx}{dy} - xy = x^2 y^3$$

dividing with x^2 on both sides

$$\frac{1}{x^2} \frac{dx}{dy} - \frac{1}{x} y = y^3 - \dots (1)$$

Let
$$\frac{1}{x} = z \Rightarrow \frac{-1}{x^2} \frac{dx}{dy} = \frac{dz}{dy}$$

Equation (1) can be written as $-\frac{dz}{dy} - zy = y^3 \Rightarrow \frac{dz}{dy} + zy = -y^3$

Let $P_1 = y$ and $Q_1 = -y^3$

The integrating factor (I.F) = $e^{\int P_1 dx} = e^{\int y} dy = e^{y^2/2}$

$$IF = e^{y^2/2}$$

The general solution: $z(I.F) = \int Q_1(I.F)dy + c$

$$\frac{1}{x}(e^{y^2/2}) = \int -y^3(e^{y^2/2})dy + c$$

$$\frac{1}{x}(e^{y^2/2}) = -\int y^2(e^{y^2/2})ydy + c$$

 $let y^2/2 = t \Rightarrow ydy = dt$

$$\frac{1}{r}(e^{y^2/2}) = -\int 2t(e^t)dt + c = -2e^t(t-1) + c$$

: The general solution $\frac{1}{x}(e^{y^2/2}) = -2e^{y^2/2}(\frac{y^2}{2}-1) + c$

9. solve
$$\frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x^2} (\log y)^2$$

Solution: Given that $\frac{dy}{dx} + \frac{y}{x} \log y = \frac{y}{x^2} (\log y)^2$

dividing with $y(\log y)^2$ on both sides

that
$$\frac{1}{y(\log y)^2} \frac{dy}{dx} + \frac{y}{xy(\log y)^2} \log y = \frac{y}{x^2 y(\log y)^2} (\log y)^2$$

$$\Rightarrow \frac{1}{y(\log y)^2} \frac{dy}{dx} + \frac{1}{x \log y} = \frac{1}{x^2}$$

Let
$$\frac{1}{\log y} = z \Rightarrow \frac{-1}{y(\log y)^2} \frac{dy}{dx} = \frac{dz}{dx}$$

Equation (1) can be written as $-\frac{dz}{dx} + \frac{z}{x} = \frac{1}{x^2} \Rightarrow \frac{dz}{dx} - \frac{z}{x} = -\frac{1}{x^2}$

Let
$$P_1 = -\frac{1}{x}$$
 and $Q_1 = -\frac{1}{x^2}$

The integrating factor (I.F) = $e^{\int P_1 dx} = e^{\int -\frac{1}{x} dy} = e^{-\log x} = \frac{1}{x}$

$$IF = \frac{1}{x}$$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$\frac{1}{\log y} \binom{1}{x} = \int -\frac{1}{x^2} \binom{1}{x} \, dx + c$$

$$\frac{1}{x \log y} = -\int \frac{1}{x^3} dx + c = \frac{1}{2x^2} + c$$

Hence the general solution $\frac{1}{x \log y} = \frac{1}{2x^2} + c$

10. solve
$$\frac{dy}{dx} = e^{x-y}[e^x - e^y]$$

Solution: The given differential equation is

$$\frac{dy}{dx} = e^{x-y}[e^x - e^y] = \frac{dy}{dx} = e^{2x-y} - e^x \Rightarrow \frac{dy}{dx} + e^x = \frac{e^{2x}}{e^y}$$

multiply with e^y on both sides

$$e^y \frac{dy}{dx} + e^y e^x = e^{2x}$$

Put
$$e^y = z$$
 and then $e^y \frac{dy}{dx} = \frac{dz}{dx}$

Can be written as $\frac{dz}{dx} + ze^x = e^{2x}$

Let
$$P_1 = e^x$$
 and $Q_1 = e^{2x}$

The integrating factor (I.F) = $e^{\int P_1 dx}$

The general solution: $z(I.F) = \int Q_1(I.F)dx + c$

$$e^{y}e^{e^{x}} = \int e^{2x}e^{e^{x}} dx + c = \int e^{x}e^{x}e^{e^{x}} dx + c \qquad \text{(Let } e^{x} = t \Rightarrow e^{x}dx = dt\text{)}$$
$$= \int te^{t}dx + c = e^{t}(t-1) + c$$

: The general solution $e^y e^{e^x} = e^{e^x} (e^x - 1) + c$

Exact and Non-Exact Differential Equations:

Definition:

A differential equation M(x, y)dx + N(x, y)dy = 0 is said to be exact if there exist a function u(x, y) such that M(x, y)dx + N(x, y)dy = u(x, y)

In other words, $\frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and the general solution can be determined by

$$\int M(x,y)dx(y \text{ treated as constent}) + \int N(x,y)dy(Remove x - term) = c$$

Problems:

1. Solve
$$(x + 2y - 3)dy - (2x - y + 1)dx = 0$$

Solution: The given differential equation can be written as

$$(2x - y + 1)dx - (x + 2y - 3)dy = 0$$
Let $M = 2x - y + 1$ and $N = -(x + 2y - 3)$

$$\text{Now } \frac{\partial M}{\partial y} = -1 \quad \text{and} \qquad \frac{\partial N}{\partial x} = -1$$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \text{ and is Exact}$$

The general solution is

$$\int M(x,y)dx(ytreatedasconstent) + \int N(x,y)dy(Removex - term) = c$$

$$\int (2x - y + 1)dx(ytreatedasconstent) - \int (2y - 3)dy(Removex - term) = c$$

$$\Rightarrow 2\frac{x^2}{2} - xy + x - 2\frac{y^2}{2} + 3y = c$$

$$\Rightarrow \text{The general solution} \quad x^2 - y^2 - xy + x = c$$

$$2.Solve(4x + 3y + 1)dx + (3x + 2y + 1)dy = 0$$

Solution: The given differential equation (4x + 3y + 1)dx + (3x + 2y + 1)dy = 0

Let
$$M = (4x + 3y + 1)$$
 and $N = (3x + 2y + 1)$

Now
$$\frac{\partial M}{\partial y} = 3$$
 and $\frac{\partial N}{\partial x} = 3$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and is Exact

The general solution is

$$\int M(x,y)dx(y-treated\ as\ constent) + \int N(x,y)dy(Remove\ x\ term) = c$$

$$\Rightarrow \int (4x+3y+1)dx + \int 2y+1)dy = c$$

$$\Rightarrow 4\frac{x^2}{2} + 3xy + x + 2\frac{y^2}{2} + y = c$$

⇒The general solution $2x^2 + y^2 + 3xy + x + y = c$

3. Solve
$$\frac{dy}{dx} = \frac{x^2 - 4xy - 2y^2}{2x^2 + 4xy - y^2}$$

Solution: The given differential equation can be written as

$$(2x^2 + 4xy - y^2)dy = (x^2 - 4xy - 2y^2)dx$$
That is $(x^2 - 4xy - 2y^2)dx - (2x^2 + 4xy - y^2)dy = 0$
Let $M = x^2 - 4xy - 2y^2$ and $N = -(2x^2 + 4xy - y^2)$
Now $\frac{\partial M}{\partial y} = -4x - 4y$ and $\frac{\partial N}{\partial x} = -4x - 4y$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \text{Exact differential equation.}$$

The general solution is

$$\int M(x,y)dx(y \text{ treated as constent}) + \int N(x,y)dy(\text{Remove } x \text{ term}) = c$$

$$\Rightarrow \int (x^2 - 4xy - 2y^2)dx + \int -(-y^2)dy = c$$

$$\Rightarrow \frac{x^3}{3} - 4\frac{x^2}{2}y - 2xy^2 + \frac{y^3}{3} = c$$

$$\Rightarrow \frac{x^3}{3} - 2x^2 y - 2xy^2 + \frac{y^3}{3} = c$$

 \Rightarrow The general solution $x^3 - 6x^2y - 6xy^2 + y^3 = c$

4. Solve:
$$(1 + e^{x/y})dx + (1 - \frac{x}{y})e^{x/y}dy = 0$$

Solution: The given differential equation $(1 + e^{x/y})dx + (1 - \frac{x}{y})e^{x/y}dy = 0$

Let
$$M = (1 + e^{x/y})$$
 and $N = (1 - \frac{x}{y})e^{x/y}$

Now
$$\frac{\partial M}{\partial y} = 0 + e^{\frac{x}{y}}(-\frac{x}{y^2}) = e^{\frac{x}{y}}(-\frac{x}{y^2})$$
 and

$$\frac{\partial N}{\partial x} = \frac{-1}{y} e^{x/y} + \left(1 - \frac{x}{y}\right) e^{\frac{x}{y}} \left(\frac{1}{y}\right) = -\frac{1}{y} e^{\frac{x}{y}} \left[1 - 1 + \frac{x}{y}\right] = e^{\frac{x}{y}} \left(-\frac{x}{y^2}\right)$$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \text{ and exact}$$

The general solution is

$$\int M(x,y)dx(y \text{ treated as constent}) + \int N(x,y)dy(\text{Removex term}) = c$$

$$\Rightarrow \int (1 + e^{\frac{x}{y}}) dx + 0 = c$$

$$\Rightarrow x + \frac{e^{\frac{x}{y}}}{1} = c \Rightarrow \text{The general solution } x + ye^{\frac{x}{y}} = c$$

5. $solve(e^y + 1) cos x dx + e^y sin x dy = 0$

Solution: The given differential equation

$$(e^y + 1)\cos x \, dx + e^y \sin x \, dy = 0$$

Let
$$M = (e^y + 1)Cos x$$
 and $N = e^y sin x$

Now
$$\frac{\partial M}{\partial y} = e^y Cos x$$
 and $\frac{\partial N}{\partial x} = e^y Cos x$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and exact

The general solution is

 $\int M(x,y)dx(y \text{ treated as constent}) + \int N(x,y)dy(Removex \text{ term}) = c$

$$\int (e^y + 1) \cos x \, dx = c$$

The general solution $(e^y + 1)\sin x = c$

6. solve
$$\frac{dy}{dx} + \frac{ax+hy+g}{hx+by+f} = 0$$

Solution: The given differential equation can be written as

$$(hx + by + f) dy + (ax + hy + g)dx = 0$$

That is (ax + hy + g)dx + (hx + by + f) dy = 0

Let
$$M = ax + hy + g$$
 and $N = hx + by + f$

Now
$$\frac{\partial M}{\partial y} = h$$
 and $\frac{\partial N}{\partial x} = h$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ and exact

$$\therefore \frac{\partial M}{\partial v} = \frac{\partial N}{\partial x} \quad and \ exact$$

The general solution is

 $\int M(x,y)dx(y \text{ treated as constent}) + \int N(x,y)dy(\text{Removex term}) = c$

$$\int (ax + hy + g) dx + \int (by + f) dy = c$$

$$a\frac{x^2}{2} + hxy + gx + b\frac{y^2}{2} + fy = c$$

The general solution $ax^2 + 2hxy + by^2 + 2gx + 2fy = 2c$

Non - exact differential equations:

A differential equation M(x,y)dx + N(x,y)dy = 0 is said to be non-exact if $\frac{\partial M}{\partial x} \neq \frac{\partial N}{\partial x}$

They are four types of non-exact differential equations

Type-1 Reduce into exact using the Integrating factors.

The following formulae are use to solve such non-exact differential equations.

1.
$$2xdx + 2ydy = d[x^2 + y^2]$$

$$2.xdy + ydx = d(xy)$$

3.
$$\frac{ydx - xdy}{y^2} = d\left[\frac{x}{y}\right]$$

$$4. \quad \frac{-xdy - ydx}{x^2} = d\left[\begin{array}{c} y \\ x \end{array}\right]$$

$$5. - \frac{xdy + ydx}{x^2y^2} = d\left[\frac{1}{xy}\right]$$

$$6.\frac{ydx - xdy}{xy} = d[\log \frac{x}{y}]$$

$$7. \quad \frac{xdy = ydx}{xy} = d \left[\log \frac{y}{x} \right]$$

7.
$$\frac{xdy = ydx}{xy} = d \left[\log \frac{y}{x} \right]$$
 8. $\frac{ydx - xdy}{x^2 + y^2} = d \left[\tan^{-1} x/y \right]$

9.
$$\frac{xdy - ydx}{x^2 + y^2} = d[\tan^{-1} y/x]$$
 $10 \frac{ye^x dx - e^x dy}{y^2} = d[\frac{e^x}{y}]$

$$10 \underbrace{y^e^{x} dx - e^{x} dy}_{y^2} = d \left[\frac{e^x}{y} \right]$$

11.
$$\frac{xe^{y}y-e^{y}dx}{x^{2}} = d\left[\frac{e^{y}}{x}\right]$$

Problems:

1. Solve $xdy - ydx = xy^2dx$

Solution: The given differential equation can be written as

$$\frac{xdy - ydx}{y^2} = x \, dx \implies \frac{-(ydx - xdy)}{y^2} = x \, dx$$

$$\Rightarrow -d \begin{bmatrix} x \\ y \end{bmatrix} = x \, dx$$

$$\Rightarrow -\int d \begin{bmatrix} x \\ y \end{bmatrix} = \int x \, dx + c$$

$$\Rightarrow \frac{-x}{y} = \frac{x^2}{2} + c \implies \text{The general solution } \frac{x}{y} + \frac{x^2}{2} + c = 0$$

2. Solve (1 + xy)xdy + (1 - xy)ydx = 0

Solution: The given differential equation can be written as

$$xdy + x^{2}y \, dy + ydx - xy^{2}dx = 0$$

$$\Rightarrow x \, dy + y \, dx + xy(xdy - ydx) = 0$$
Dividing with $x^{2}y^{2}$ on both sides
$$\Rightarrow \frac{xdy + ydx}{x^{2}y^{2}} + \frac{xy(xdy - ydx)}{x^{2}y^{2}} = 0$$

$$\Rightarrow \frac{xdy + ydx}{x^{2}y^{2}} + \frac{(xdy - ydx)}{xy} = 0$$

$$\Rightarrow d\left[\frac{1}{xy}\right] + d\left[\log \frac{y}{x}\right] = 0 \text{ Integrating on both sides}$$

$$\Rightarrow \int d\left[\frac{1}{xy}\right] + \int d\left[\log \frac{y}{x}\right] = c$$

$$\Rightarrow \text{The general solution } \frac{1}{xy} + \log \frac{y}{x} = c$$

3. Solve
$$xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$$

Solution: Given that
$$xdx + ydy + \frac{xdy - ydx}{x^2 + y^2} = 0$$

$$\Rightarrow \int xdx + \int ydy + \int \frac{xdy - ydx}{x^2 + y^2} = c$$

$$\Rightarrow \int xdx + \int ydy + \int d[\tan^{-1}y/x] = c$$
The general solution $\frac{x^2}{x^2 + y^2} + \tan^{-1}y/x = c$

$4. Solve \ ydx - xdy + \log x \ dx = 0.$

Solution: Given that $ydx - xdy + \log x dx = 0$

Dividing with x^2 on both sides

$$\frac{ydx - xdy}{x^2} + \frac{\log x}{x^2} dx = c$$

$$\Rightarrow \int \frac{-(xdy - ydx)}{x^2} + \int \frac{\log x}{x^2} dx = c$$

$$\Rightarrow -\int d(\frac{y}{x}) + \int \log x \frac{1}{x^2} dx = c$$

$$\Rightarrow -\frac{y}{x} + [\log x \left(-\frac{1}{x}\right) - \int \frac{1}{x} \left(-\frac{1}{x}\right) dx] = c$$

$$\Rightarrow -\frac{y}{x} + [-\frac{1}{x}\log x + \int \frac{1}{x^2} dx] = c$$

$$\Rightarrow -\frac{y}{x} - \frac{1}{x}\log x - \frac{1}{x} = c \Rightarrow \text{The general solution } \frac{y}{x} + \frac{1}{x}\log x + \frac{1}{x} = c$$

5. Solve $xdy = [y + x\cos^2(\frac{y}{x})] dx$

Solution: The given differential equation can be written as

$$xdy - ydx = x\cos^{2}\left(\frac{y}{x}\right) dx$$

$$\Rightarrow \frac{xdy - ydx}{\cos^{2}\left(\frac{y}{x}\right)} = x dx$$

$$\Rightarrow \sec^{2}\left(\frac{y}{x}\right) \left[\frac{xdy - ydx}{x^{2}}\right] = \frac{x dx}{x^{2}}$$

$$\Rightarrow \int \sec^{2}\left(\frac{y}{x}\right) d\left(\frac{y}{x}\right) = \int \frac{1}{x} dx$$

$$\Rightarrow \text{The general solution } \tan\frac{y}{x} = \log x + c$$

6. Solve
$$(x^2 + y^2 + x)dx - (2x^2 + 2y^2 - y)dy = 0$$

Solution: The given differential equation can be written as

$$(x^{2} + y^{2})dx + xdx - 2(x^{2} + y^{2}) + ydy = 0$$

$$\Rightarrow [dx - 2dy] + xdx + ydy = 0$$

$$\Rightarrow dx - 2dy + \frac{2(xdx + ydy)}{2(x^2 + y^2)} = 0$$

$$\Rightarrow \int dx - 2 \int dy + \frac{1}{2} \int \frac{2xdx + 2ydy}{(x^2 + y^2)} = c$$

$$\Rightarrow \text{The general solution } x - 2y + \frac{1}{2} \log(x^2 + y^2) = c$$

Type-2 Homogeneous non-exact Differential equation

A non-exact differential equation is in the form M(x,y)dx + N(x,y)dy = 0 where M(x,y), N(x,y) are homogeneous equations the to solve this equation when we reduce into exact using an Integrating Factor $\frac{1}{Mx+Ny}$ where $Mx + Ny \neq 0$.

Problems:

1. Solve
$$x^2y dx - (x^3 + y^3)dy = 0$$

Solution: In the given differential equation $x^2y dx - (x^3 + y^3)dy = 0$

Let
$$M = x^2y$$
 $N = -(x^3 + y^3)$
$$\frac{\partial M}{\partial y} = x^2 \qquad \frac{\partial N}{\partial x} = -3x^2 \qquad \therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \text{ not exact}$$

And is homogeneous the integrating factor = $\frac{1}{Mx+Ny} = \frac{-1}{y^4}$

(As
$$Mx + Ny = (x^2y)x - (x^3 + y^3)y = x^3y - x^3y - y^4 = -y^4$$
)

Multiply the integrating factor with the given DE

$$-\frac{x^2y}{y^4} dx + \frac{x^3 + y^3}{y^4} dy = 0 \implies -\frac{x^2}{y^3} dx + \left[\frac{x^3}{y^4} + \frac{1}{y}\right] dy = 0$$

$$\text{Let } M = -\frac{x^2}{y^3} \qquad N = \frac{x^3}{y^4} + \frac{1}{y}$$

$$\frac{\partial M}{\partial y} = -x^2 \left[-\frac{3}{y^4}\right] = \frac{3x^2}{y^4} \qquad \frac{\partial N}{\partial x} = \frac{3x^2}{y^4} + 0 = \frac{3x^2}{y^4}$$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \text{exact}$$

The general solution $\int -\frac{x^2}{v^3} dx + \int \frac{1}{v} dy = c$

$$\Rightarrow \frac{-1}{y^3} \frac{x^3}{3} + \log y = c$$

 $\Rightarrow \text{ The general solution } \frac{-x^3}{3y^3} + \log y = c$

2. Solve $y^2 dx - (x^2 - y^2 - xy)dy = 0$

Solution: In the given differential equation $y^2 dx + (x^2 - y^2 - xy)dy = 0$

Let
$$M = y^2$$
 $N = (x^2 - y^2 - xy)$

$$\frac{\partial M}{\partial y} = 2y$$
 $\frac{\partial N}{\partial x} = 2x - y$ $\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$ not exact

And is homogeneous the integrating factor = $\frac{1}{Mx+Ny} = \frac{1}{y(x^2-y^2)}$

$$(As Mx + Ny = (y^2)x + (x^2 - y^2 - xy)y$$

$$= xy^2 + x^2y - y^3 - xy^2 = x^2y - y^3)$$

$$= y(x^2 - y^2)$$

Multiply the integrating factor with the given DE

$$\frac{y^2}{y(x^2-y^2)}dx + \frac{x^2-y^2-xy}{y(x^2-y^2)}dy = 0$$

Let
$$M = \frac{y}{(x^2 - y^2)}$$
 $N = \frac{x^2 - y^2 - xy}{y(x^2 - y^2)} = \frac{x^2 - y^2}{y(x^2 - y^2)} - \frac{xy}{y(x^2 - y^2)} = \frac{1}{y} - \frac{x}{x^2 - y^2}$

$$\frac{\partial M}{\partial y} = \frac{(x^2 - y^2) - y(0 - 2y)}{(x^2 - y^2)^2} = \frac{(x^2 + y^2)}{(x^2 - y^2)^2} \qquad \frac{\partial N}{\partial x} = 0 - \frac{(x^2 - y^2) - x(2x - 0)}{(x^2 - y^2)^2} = \frac{(x^2 + y^2)}{(x^2 - y^2)^2}$$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \text{exact}$$

The general solution $\int \frac{y}{(x^2 - y^2)} dx + \int \frac{1}{y} dy = c$

$$y\left[\frac{1}{2y}\log\frac{x-y}{x+y}\right] + \log y = c \Rightarrow \text{The general solution } \frac{1}{2}\log\frac{x-y}{x+y} + \log y = c$$

3. Solve
$$(x^2y - 2xy^2)dx - (x^3 - 3x^2y)dy = 0$$

Solution: In the given differential equation

Let
$$M = x^2y - 2xy^2$$
 $N = -(x^3 - 3x^2y)$
$$\frac{\partial M}{\partial y} = x^2 - 4xy \qquad \frac{\partial N}{\partial x} = -(3x^2 - 6xy) \qquad \therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \text{ not exact}$$

And is homogeneous the integrating factor = $\frac{1}{Mx+Ny} = \frac{1}{x^2y^2}$

$$(As Mx + Ny = (x^2y - 2xy^2)x - (x^3 - 3x^2y)y = x^3y - 2x^2y^2 - x^3y + 3x^2y^2 = x^2y^2)$$

Multiply the integrating factor with the given DE

$$\frac{x^2y - 2xy^2}{x^2y^2} dx - \frac{(x^3 - 3x^2y)}{x^2y^2} dy = 0$$

$$\left[\frac{1}{y} - \frac{2}{x}\right] dx - \left[\frac{x}{y^2} - \frac{3}{y}\right] dy = 0$$
Let $M = \frac{1}{y} - \frac{2}{x}$
$$N = -\frac{x}{y^2} + \frac{3}{y}$$

$$\frac{\partial M}{\partial y} = -\frac{1}{y^2} - 0 = -\frac{1}{y^2}$$

$$\frac{\partial N}{\partial x} = -\frac{1}{y^2} - 0 = -\frac{1}{y^2}$$

$$\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \text{exact}$$

The general solution $\int \left[\frac{1}{y} - \frac{2}{x} \right] dx - \int \frac{-3}{y} dy = c$

 $\Rightarrow \text{The general solution } \frac{x}{y} - 2\log x + 3\log y = c$

Type-3 Non - exact yf(x, y)dx + xf(x, y)dy = 0 form

A non-exact differential equation is in the form M(x, y)dx + N(x, y)dy = 0 or

yf(x,y)dx + xf(x,y)dy = 0 the to solve this equation when we reduce into exact using an Integrating Factor $\frac{1}{Mx-Ny}$ where $Mx - Ny \neq 0$.

Problems: 1.Solve y(1 + xy)dx + x(1 - xy)dy = 0

Solution: In the given differential equation

$$M = y(1 + xy) = y + xy^2$$
 $N = x(1 - xy) = x - x^2y$

$$\frac{\partial M}{\partial y} = 1 + 2xy \qquad \qquad \frac{\partial N}{\partial x} = 1 - 2xy \qquad \qquad \therefore \quad \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad \text{not exact.}$$

The integrating factor =
$$\frac{1}{Mx-Ny} = \frac{1}{2 x^2 y^2}$$

(since
$$Mx - Ny = (y + xy^2)x - (x - x^2y)y = xy + x^2y^2 - xy + x^2y^2 = 2x^2y^2 \neq 0$$
)

Multiply the integrating factor with the given DE

$$\frac{y + xy^2}{2 x^2 y^2} dx + \frac{x - x^2 y}{2 x^2 y^2} dy = 0$$

$$\left[\frac{1}{2yx^2} + \frac{1}{2x}\right] dx + \left[\frac{1}{2xy^2} - \frac{1}{2y}\right] dy = 0$$

$$Let M = \frac{1}{2vx^2} + \frac{1}{2x}$$

$$N = \frac{1}{2xy^2} - \frac{1}{2y}$$

$$\frac{\partial M}{\partial v} = -\frac{1}{2v^2x^2}$$

$$\frac{\partial N}{\partial x} = -\frac{1}{2v^2x^2}$$

$$\frac{\partial M}{\partial y} = -\frac{1}{2y^2x^2}$$
 $\frac{\partial N}{\partial x} = -\frac{1}{2y^2x^2}$ $\therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x}$ exact

The general solution $\int \frac{1}{2yx^2} + \frac{1}{2x} dx + \int \frac{1}{2xy^2} - \frac{1}{2y} dy = c$

$$\Rightarrow$$
 The general solution $\frac{-1}{2xy} + \frac{1}{2} \log x - \frac{1}{2} \log y = c$

2. Solve $y(xy + 2x^2y^2)dx + x(xy - x^2y^2)dy = 0$

Solution: In the given differential equation

$$M = y(xy + 2x^2y^2) = xy^2 + 2x^2y^3$$
 $N = x(xy - x^2y^2) = x^2y - x^3y^2$

$$\frac{\partial M}{\partial y} = 2xy + 6x^2y^2 \qquad \qquad \frac{\partial N}{\partial x} = 2xy - 3x^2y^2 \qquad \qquad \therefore \quad \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad \text{not exact.}$$

The integrating factor = $\frac{1}{Mr-Nv} = \frac{1}{3r^3v^3}$

$$(since Mx - Ny = (xy^2 + 2x^2y^3)x - (x^2y - x^3y^2)y$$

$$= x^2y^2 + 2x^3y^3 - x^2y^2 + x^3y^3 = 3x^3y^3 \neq 0)$$

Multiply the integrating factor with the given DE

$$\frac{xy^2 + 2x^2y^3}{3x^3y^3} dx + \frac{x^2y - x^3y^2}{3x^3y^3} dy = 0$$

$$\left[\frac{1}{3x^2y} + \frac{2}{3x}\right] dx + \left[\frac{1}{3xy^2} - \frac{1}{3y}\right] dy = 0$$

K S I PRIYADARSINI PRGC

Let
$$M = \frac{1}{3x^2y} + \frac{2}{3x}$$
 $N = \frac{1}{3xy^2} - \frac{1}{3y}$
$$\frac{\partial M}{\partial y} = -\frac{1}{3y^2x^2} \qquad \frac{\partial N}{\partial x} = -\frac{1}{3y^2x^2} \qquad \therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \text{exact}$$

The general solution $\int \frac{1}{3x^2y} + \frac{2}{3x} dx + \int \frac{1}{3xy^2} - \frac{1}{3y} dy = c$

$$\Rightarrow \text{The general solution} \quad \frac{-1}{3xy} + \frac{2}{3}\log x - \frac{1}{3}\log y = c$$

3. Solve x(1 + xy)dy + y(1 - xy)dx = 0

Solution: The given DE can be written as y(1 - xy)dx + x(1 + xy)dy = 0

In the given differential equation

$$M = y(1 - xy) = y - xy^{2}$$

$$N == x(1 + xy) = x + yx^{2}$$

$$\frac{\partial M}{\partial y} = 1 - 2xy$$

$$\frac{\partial N}{\partial x} = 1 + 2xy$$

$$\therefore \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x}$$
 not exact.

The integrating factor = $\frac{1}{Mx-Ny} = \frac{-1}{2 x^2 y^2}$

(since
$$Mx - Ny = (y - xy^2)x - (x + x^2y)y = xy - x^2y^2 - xy - x^2y^2 = -2x^2y^2 \neq 0$$
)

Multiply the integrating factor with the given DE

$$\frac{y-xy^2}{-2x^2y^2} dx + \frac{x+x^2y}{-2x^2y^2} dy = 0$$

$$\left[\frac{1}{2yx^2} - \frac{1}{2x}\right] dx + \left[\frac{1}{2xy^2} + \frac{1}{2y}\right] dy = 0$$
Let $M = \frac{1}{2yx^2} - \frac{1}{2x}$

$$N = \frac{1}{2xy^2} + \frac{1}{2y}$$

$$\frac{\partial M}{\partial y} = -\frac{1}{2y^2x^2} \qquad \frac{\partial N}{\partial x} = -\frac{1}{2y^2x^2} \qquad \therefore \frac{\partial M}{\partial y} = \frac{\partial N}{\partial x} \quad \text{exact}$$

The general solution $\int \frac{1}{2yx^2} - \frac{1}{2x} dx + \int \frac{1}{2xy^2} + \frac{1}{2y} dy = c$

$$\Rightarrow$$
 The general solution $\frac{-1}{2xy} - \frac{1}{2} \log x + \frac{1}{2} \log y = c$

Type-4 Non - exact Mdx + Ndy = 0 form

A non-exact differential equation is in the form M(x, y)dx + N(x, y)dy = 0 or

M(x,y)dx + N(x,y) (least function copare to M) dy = 0 the to solve this equation when we reduce into exact using an Integrating Factor $e^{\int f(x)dx}$ where

$$f(x) = \frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right]$$

Problems: 1. Solve $2xydy - (x^2 + y^2 + 1)dx = 0$

Solution: The given differential equation an be written as

$$(x^{2} + y^{2} + 1)dx - 2xydy = 0$$
Let M = $x^{2} + y^{2} + 1$ $N = -2xy$

$$\frac{\partial M}{\partial y} = 2y \qquad \qquad \frac{\partial N}{\partial x} = -2y \quad \Rightarrow \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \ non \ exact \ DE$$

Integrating factor, I F = $e^{\int f(x)dx} = e^{\int -\frac{2}{x}dx} = e^{-2\log x} = e^{\log x^{-2}} = \frac{1}{x^2}$

$$I F = \frac{1}{x^2}$$

Multiply the IF with the given DE we get

$$\left[\frac{x^2 + y^2 + 1}{x^2} \right] dx - \frac{2xy}{x^2} dy = 0$$

$$\left[1 + \frac{y^2}{x^2} + \frac{1}{x^2}\right] dx - \frac{2y}{x} dy = 0$$

Let
$$M_1 = 1 + \frac{y^2}{x^2} + \frac{1}{x^2}$$
 $N_1 = -\frac{2y}{x}$

$$\frac{\partial M_1}{\partial y} = 0 + \frac{2y}{x^2} + 0 = \frac{2y}{x^2} \qquad \qquad \frac{\partial N_1}{\partial x} = -2y \left(-\frac{1}{x^2}\right) = \frac{2y}{x^2} \qquad \therefore \frac{\partial M_1}{\partial y} = \frac{\partial N_1}{\partial x} \quad exact DE$$

The general solution is $\int \left[1 + \frac{y^2}{x^2} + \frac{1}{x^2}\right] dx + 0 = c$

$$\Rightarrow x - \frac{y^2}{x} - \frac{1}{x} = c \Rightarrow \text{The general solution } x^2 - y^2 - 1 = cx$$

Problems: 2. Solve $(x^2 + y^2 + 2x)dx + 2ydy = 0$

Solution: The given differential equation is $(x^2 + y^2 + 2x)dx + 2ydy = 0$

Let
$$M = x^2 + y^2 + 2x$$
 $N = 2y$

$$\frac{\partial M}{\partial y} = 2y \qquad \qquad \frac{\partial N}{\partial x} = 0 \quad \Rightarrow \quad \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \quad non \; exact \; DE$$

Clearly N is a least function
$$f(x) = \frac{1}{N} \left[\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right] = \frac{1}{2y} \left[2y - 0 \right] = 1$$

Integrating factor, I F = $e^{\int f(x)dx} = e^{\int 1 dx} = e^x$

$$IF = e^x$$

Multiply the IF with the given DE we get

$$e^{x}(x^{2} + y^{2} + 2x)dx + 2ye^{x}dy = 0$$
Let $M_{1} = e^{x}(x^{2} + y^{2} + 2x)$

$$N_{1} = 2ye^{x}$$

$$\frac{\partial M_{1}}{\partial y} = e^{x}(2y) = 2ye^{x}$$

$$\frac{\partial N_{1}}{\partial x} = 2ye^{x}$$

$$\therefore \frac{\partial M_{1}}{\partial y} = \frac{\partial N_{1}}{\partial x} \quad exact DE$$

The general solution is $\int e^x(x^2 + y^2 + 2x)dx + 0 = c \text{ using Integration by parts}$

$$e^{x}(x^{2} + y^{2} + 2x) - e^{x}(2x + 2) + e^{x}(2) = c$$

 $e^{x}(x^{2} + y^{2} + 2x - 2x - 2 + 2) = c$
 \Rightarrow The general solution $e^{x}(x^{2} + y^{2}) = c$

Problems: 3. Solve $(1 + y + x^2y)dx + (x + x^3)dy = 0$

Solution: The given differential equation is $(1 + y + x^2y)dx + (x + x^3)dy = 0$

Let
$$M = 1 + y + x^2y$$
 $N = x + x^3$
$$\frac{\partial N}{\partial y} = 1 + x^2 \qquad \frac{\partial N}{\partial x} = 1 + 3x^2 \Rightarrow \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \text{ non exact DE}$$

Integrating factor, IF =
$$e^{\int f(x)dx} = e^{\int \frac{-2x}{(1+x^2)}dx} = e^{-\log(1+x^2)}$$

$$IF = \frac{1}{1+x^2}$$

Multiply the IF with the given DE we get

$$\frac{1+y+x^2y}{1+x^2} dx + \frac{x+x^3}{1+x^2} dy = 0 \implies (\frac{1}{1+x^2} + y) dx + x dy = 0$$

Let
$$M_1 = \frac{1}{1+x^2} + y$$
 $N_1 = x$

$$\frac{\partial M_1}{\partial y} = 1 \qquad \frac{\partial N_1}{\partial x} = 1 \qquad \therefore \frac{\partial M_1}{\partial y} = \frac{\partial N_1}{\partial x} \quad exact \ DE$$

The general solution is $\int \frac{1}{1+x^2} + y \, dx + 0 = c \text{ using Integration by parts}$

⇒ The general solution $tan^{-1}x + xy = c$

Type-5 Non - exact Mdx + Ndy = 0 form

A non-exact differential equation is in the form M(x, y)dx + N(x, y)dy = 0 or

M(x,y)(least function copare to N)dx + N(x,y)dy = 0 the to solve this equation when we reduce into exact using an Integrating Factor $e^{\int g(y)dy}$ where

$$g(y) = \frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right]$$

Problems:

1. Solve
$$(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$$

Solution: The given differential equation is $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$

$$= \frac{1}{y(xy^2+1)}\{xy^2+1\} = \frac{1}{y}$$

Multiply the IF with the given DE we get

$$(xy^4 + y^2)dx + 2(x^2y^3 + xy + y^5)dy = 0$$

Let
$$M_1 = xy^4 + y^2$$
 $N_1 = 2(x^2y^3 + xy + y^5)$

$$\frac{\partial M_1}{\partial y} = 4xy^3 + 2y \qquad \frac{\partial N_1}{\partial x} = 4xy^3 + 2y \qquad \therefore \frac{\partial M_1}{\partial y} = \frac{\partial N_1}{\partial x} \quad exact \ DE$$

The general solution is

$$\int xy^4 + y^2 dx + \int 2y^5 dy + 0 = c$$

$$\frac{x^2y^4}{x^2} + xy^2 + 2\frac{y^6}{6} = c$$

⇒ The general solution $3x^2y^4 + 6xy^2 + 2y^6 = c$

2. Solve
$$(y^4 + 2y)dx + (xy^3 - 4x + 2y^4)dy = 0$$

Solution: The given differential equation is $(y^4 + 2y)dx + (xy^3 - 4x + 2y^4)dy = 0$

Let
$$M = y^4 + 2y$$
 $N = xy^3 - 4x + 2y^4$
$$\frac{\partial M}{\partial y} = 4y^3 + 2 \qquad \frac{\partial N}{\partial x} = (y^3 - 4 + 0) = y^3 - 4 \Rightarrow \frac{\partial M}{\partial y} \neq \frac{\partial N}{\partial x} \text{ non exact DE}$$

Clearly M is a least function $\therefore g(y) = \frac{1}{M} \left[\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right]$

$$= \frac{1}{y^4 + 2y} \left[y^3 - 4 - 4y^3 - 2 \right]$$

$$= \frac{1}{y(y^3+2)} \{-3y^3-6\} = \frac{-3(y^3+2)}{y(y^3+2)} = \frac{-3}{y}$$

$$IF = e^{\int g(y)dy} = e^{\int \frac{-3}{y}dy} = e^{-3\log y} = \frac{1}{y^3}$$
 $IF = \frac{1}{y^3}$

Multiply the IF with the given DE we get

$$\frac{y^4 + 2y}{y^3} dx + \frac{xy^3 - 4x + 2y^4}{y^3} dy = 0 \Rightarrow \left[y + \frac{2}{y^2} \right] dx + \left[x - \frac{4x}{y^3} + 2y \right] dy = 0$$

Let
$$M_1 = y + \frac{2}{v^2}$$
 $N_1 = x - \frac{4x}{v^3} + 2y$

$$\frac{\partial M_1}{\partial v} = 1 - \frac{4}{v^3}$$
 $\frac{\partial N_1}{\partial x} = 1 - \frac{4}{v^3}$ $\therefore \frac{\partial M_1}{\partial v} = \frac{\partial N_1}{\partial x}$ exact DE

The general solution is $\int \left[y + \frac{2}{y^2}\right] dx + \int 2y \ dy = c \Rightarrow xy + \frac{2x}{y^2} + y^2 = c$

The general solution $xy + \frac{2x}{v^2} + y^2 = c$
